
ILLINOIS INSTITUTE OF TECHNOLOGY

Application of DMNetwork and TS
in Transient Stability Simulator for

Power Systems
CS 595: Advanced Scientific Computing

Final Project

by

Bikiran Guha and Jianqiao Huang

12/8/2016

Table of Contents

Abstract ... 2

Introduction ... 3

Base Power System Model .. 4

DMNetwork and TS .. 6

Code Implementation .. 7

Results & Analysis .. 10

Conclusion and Future Work 11

References ... 11

Abstract

This project has used DMNetwork (a class in PETSc) to organize a 9 bus

power system consisting of 3 generators, 3 loads and 9 transmission lines.

The project uses TS to simulate the transient stability of the network in

response to a short circuit fault at one of the buses. The simulations can be

executed using multiple processors. The program was then extended to be

able to create user-defined number of copies of the 9 bus power system

model and physically connect them together radially. In this manner, a

90,000 bus system (having 450,000 variables) was created and scalability of

the system was tested using multiple processors.

Introduction

The electric power system can be broadly categorized into generation, transmission and

distribution. Generators are the power source, i.e., they generate electrical energy from

various fuel sources like coal, natural gas, nuclear, hydro, wind or sunlight. The electrical

energy is then transported over long distances via transmission lines to the distribution

stations, where it is finally distributed to the consumers. Figure 1 illustrates the basic

structure of the power system

Figure 1 Subsystems in a power system

The transmission system plays an important role in the reliability of the system since it

transports enormous amount of power from the generation subsystem to the load centers.

Therefore, the utility operators need to take preventive actions so that the continued

operation of the transmission system can be ensured in case of severe disturbances such

as short circuit faults. Transient stability analysis is one such important preventive action.

Transient stability simulators for power systems are used to visualize the

electromechanical interactions of the generators within the power system. These

simulators help determine the stability of the power system following a transient such as

a fault or a load switching event. By stability, we mean the ability of the system to return

to a normal operating state after a transient event. The stability of the system in reaction

to an event depends on the current operating state, the magnitude of the event, the

protection mechanism in place and preventive or corrective actions taken.

In this project, the transient stability of a small power system is tested in response to a

short circuit fault using the PETSc library and its features such as DMNetwork and TS.

The simulation model of this small power system is identical to an example in the PETSc

library (ex9bus), but that example does not use DMNetwork and can only run with a

single processor. The simulation results have been matched with that of ex9bus (both in

sequential and parallel) to ensure accuracy.

The organizing features of DMNetwork have been utilized in the project to create a

program which can accept input from the user to create a certain number of copies of the

base power system. The program then radially connects the copies to create a larger

power system. In this way, the user can create a very large power system having a bus

number which is a multiple of 9 and can test the stability of the system in response to

faults at various locations in the system.

Finally, in this report, the scalability of parallel processing has been demonstrated in a

90,000 bus system having 450,00 variables.

Base Power System Model

The power system model has been shown in Figure 2. It consists of 9 buses (electrical

nodes), 3 generators, 3 loads and 9 transmission lines. The model is representative of a

simple transmission system.

The equations in the model are differential-algebraic in nature, i.e., there are some

equations which are differential while others are algebraic. The equations can be divided

into two subsystems: Network subsystem and Generator subsystem.

 Figure 2 Model for 9 bus power system

The network subsystem consists of the algebraic equations associated with the network.

These equations represent the current balance in the system, i.e., the algebraic sum of

currents meeting at a bus has to be zero. Since the current is complex (has real and

imaginary components), there are 2 current balance equations for each bus:

 (𝑰𝑳)𝒓𝒆𝒂𝒍 + (𝑰𝑮)𝒓𝒆𝒂𝒍 + (𝑰𝒃𝒓𝒂𝒏𝒄𝒉)𝒓𝒆𝒂𝒍 = 𝟎

(𝑰𝑳)𝒊𝒎𝒂𝒈 + (𝑰𝑮)𝒊𝒎𝒂𝒈 + (𝑰𝒃𝒓𝒂𝒏𝒄𝒉)𝒊𝒎𝒂𝒈 = 𝟎

where (𝑰𝑳)𝒓𝒆𝒂𝒍, (𝑰𝑮)𝒓𝒆𝒂𝒍 and (𝑰𝒃𝒓𝒂𝒏𝒄𝒉)𝒓𝒆𝒂𝒍 are the real components of the load current,

generator current and branch currents respectively and (𝑰𝑳)𝒊𝒎𝒂𝒈, (𝑰𝑮)𝒊𝒎𝒂𝒈 and

(𝑰𝒃𝒓𝒂𝒏𝒄𝒉)𝒊𝒎𝒂𝒈 are the imaginary components of the load current, generator current and

branch currents respectively.

The generator subsystem consists of 9 differential-algebraic equations associated with

the generator and its exciter. These equations model the dynamics of the generator

subsystem. The equations are provided below and are from [1] which contains a detailed

description of generator subsystem models.

𝑑𝛿𝑖

𝑑𝑡
= 𝜔𝑖 − 𝜔𝑠

 𝑇𝑞𝑜𝑖
′ 𝑑𝐸𝑞𝑖

′

𝑑𝑡
= −𝐸𝑑𝑖

′ + (𝑋𝑞𝑖 − 𝑋𝑞𝑖
′)𝐼𝑞𝑖

2𝐻𝑖

𝜔𝑠

𝑑𝜔𝑖

𝑑𝑡
= 𝑇𝑀𝑖 − 𝐸𝑑𝑖

′ 𝐼𝑑𝑖 − (𝑋𝑞𝑖
′ − 𝑋𝑑𝑖

′)𝐼𝑑𝑖 𝐼𝑞𝑖 − 𝐷𝑖(𝜔𝑖 − 𝜔𝑠)

𝑇𝑑𝑜𝑖
′

𝑑𝐸𝑑𝑖
′

𝑑𝑡
= −𝐸𝑞𝑖

′ − (𝑋𝑑𝑖 − 𝑋𝑑𝑖
′)𝐼𝑑𝑖 + 𝐸𝑓𝑑𝑖

𝑇𝐸𝑖

𝑑𝐸𝑓𝑑𝑖

𝑑𝑡
= − (𝐾𝐸𝑖 + 𝑆𝐸𝑖 (𝐸𝑓𝑑𝑖)) 𝐸𝑓𝑑𝑖 + 𝑉𝑅𝑖

𝑇𝐹𝑖

𝑑𝑅𝑓𝑖

𝑑𝑡
= −𝑅𝑓𝑖 +

𝐾𝐹𝑖

𝑇𝐹𝑖
𝐸𝑓𝑑𝑖

𝑇𝐴𝑖

𝑑𝑉𝑅𝑖

𝑑𝑡
= −𝑉𝑅𝑖 + 𝐾𝐴𝑖𝑅𝑓𝑖 −

𝐾𝐴𝑖𝐾𝐹𝑖

𝑇𝐹𝑖
𝐸𝑓𝑑𝑖 + 𝐾𝐴𝑖(𝑉𝑟𝑒𝑓𝑖 − 𝑉𝑖)

 [𝑍𝑑−𝑞,𝑖] [
𝐼𝑑𝑖

𝐼𝑞𝑖
] = [

𝐸𝑑𝑖
′ − 𝑉𝑑𝑖

𝐸𝑞𝑖
′ − 𝑉𝑞𝑖

]

Since there are 9 buses and 3 generators, there are a total of 45 variables in this simple

power system model.

DMNetwork and TS

PETSC DMNetwork [2] is a class for managing and organizing general unstructured

networks and therefore it is suitable for power grid applications. It is built on top of

DMPlex, an object used to represent unstructured grids. The design elements in the

DMNetwork consist of:

 Vertex

 Edge

 Components

Vertices represent the junctions or nodes in the network while the edge represent the

connections between vertices. The components are the structures which contain the

physical parameters of the different devices in the model.

Advantages of using DMNetwork:

 Vertices and edges can be added or removed easily

 DMNetwork has functions to keep track of variable indexes

 DMNetworkDistribute() can easily set up and partition the network

 Computations using PETSc solvers take place seamlessly over the network

In the project, for the base 9 bus system model, there are 9 vertices (1 for each bus), 9

edges (1 for each branch) and 4 components: bus, generator, load and branch.

PETSC TS is a library dedicated to the scalable solution of ordinary differential

equations (ODEs) and differential algebraic equations (DAEs) arising from the

discretization of partial differential equations (PDEs) [3]. With the help of the TS library,

it was possible to evaluate the system’s state variables at each time step and thereby get

the response of the system during and after a transient event, such as a short circuit fault.

Code Implementation

The code for the developed simulator is written in C using the PETSc library framework

and compiled with the GNU’s gcc compiler with the gdb debugger. The source code is

stored in a git repository. The steps of the project are summarized in Figure 3.

Figure 3: Project Flowchart

The first step of the program is to read the inputs to the model. If there are multiple

processors, only the processor with rank = 0 is involved in the reading process. The

binary files ‘X.bin’ and ‘Ybus.bin’ contain the initial values of the state variables (X) and

the Ybus matrix. The Ybus matrix is used to calculate the branch currents (Ibranch) from

the bus voltages (Vbus) from the following equation:

𝐼𝑏𝑟𝑎𝑛𝑐ℎ = 𝑌𝑏𝑢𝑠𝑉𝑏𝑢𝑠

 where Vbus is the state variable vector for the network equations. Its initial value has been

provided in the X.bin file. The values of X.bin are read into V0 vector and that of

Ybus.bin are stored into the Ybus matrix. The function read_data() is used to read all the

inputs and store them inside data structures representing buses, generators, loads and

branches. These data structures contain parametric data of the corresponding devices.

read_data() also defines an edgelist which contains information about how the vertices

are connected.

The next step involves creating the DMNetwork object using DMNetworkCreate() and

specifying the number of vertices and edges using DMNetworkSetSizes(). It is important

to mention here that, for parallel programming, only the rank 0 processor is involved in

the DMNetwork setup. The network data structures are registered as components and

given component keys, which is an identifier for the component. The bus, generator and

load components are then added to the vertices while the branch component is added to

the edges. If the number of processors is more than one, DMNetworkDistribute()

distributes the network and moves the associated data.

Then vectors X, Xdot and F are created to store the state variables, their derivatives and

the residual function values. The state variables are then initialized using

SetInitialGuess() with V0 as input. A user context was created to contain information

about the fault, such as fault on/off times, location of fault, etc.

The next step was to set up the TS solver. After creating the TS object using TSCreate(),

it was added to the DMNetwork using TSSetDM(). Then the various options used by TS

are set, such as the time-stepping solver method, the start time, end time and the step

time. For the project, TS uses the Backward Euler Method to solve for X.

The FormIFunction() gets X, Xdot and time at the current step and sets up the equations

in the residual function F for TS to solve. The code passes FormIFunction() to

TSSetIFunction() which tells TS to solve the following equation:

𝐹(𝑡, 𝑋(𝑡), 𝑋(𝑡)̇) = 0

When TSSolve() is called, TS calls Scalable Nonlinear Equations Solver (SNES) to

solve the residual function of the non-linear equations. SNES linearizes the non-linear

residual functions using the Newton’s method and then calls KSPSolve() to solve the

linear equations using the Krylov Subspace methods. The equations involved in the

solving process can be summarized as:

𝑋𝑛+1 − 𝑋𝑛 −
𝛥𝑡

2
(𝑓 + 𝑓(𝑋𝑛)) = 0

𝑔(𝑋𝑛+1) = 0

During switching events (fault-on and fault-off), the program gets the SNES object from

TS using TSGetSNES() and gets AlgFunction(). In AlgFunction(), the residual

functions of all the differential equations are set to zero and the Ybus values of the fault

bus are changed to represent a short circuit fault. AlgFunction() is then used by

SNESolve() to get the values of X.

The simulation options used are:

TS type: Backward Euler

SNES solver: Newton’s Method

SNES Relative Tolerance: 1e-8

SNES Absolute Tolerance: 1e-8

KSP solver: GMRES

Sequential Precondioner: LU

Parallel Preconditioner:

-pc_type bjacobi

-sub_pc_type lu

-sub_pc_factor_shift_type NONZERO

After successfully implementing the 9 bus model in DMNetwork, the program was

modified to make copies of the model. This was achieved using for loops inside

read_data() and making component[i + ncomp] and component[i] identical with respect

to the data they hold. Here, i: component index, ncomp: No. of the component inside the

9 bus system. For example, ncomp = 9 for buses and ncomp = 3 for generators. The same

concept was applied to edgelist, i.e., edgelist[i+nedgelist] = edgelist[i]. The user can

define the number of copies to make of the 9 bus model while executing the program by

appending with ‘-nc <no. of copies>’.

Finally, the copies were connected radially, i.e., a branch was added between the last bus

of copy[i] and the first bus of copy[i+1] and the edgelist was updated accordingly.

Besides modifying read_data(), the program also modifies the DMNetwork dimensions

in the main program to accommodate all the copies.

Results & Analysis

The file 9bus_dm1_l2.c in the git repository contains the source code of the program. The

file ‘petscoptions’ contains all the options. Initially, the number of copies is set to 1 and

the results are verified with the ex9bus.c example in PETSc library. Figure 4.1 shows the

voltage magnitude of fault bus in the nine bus system while Figure 4.2 shows the direct

axis current (Id) value of generator 1. The total simulation time is set to 5 seconds. The

simulation scenario is the application of a three phase fault on bus 9 at t= 1 seconds, and

clearing it at t= 1.2 seconds. The fault resistance was set to 0.0001 pu.

 Figure 4.1 Voltage of bus 9 plots Figure 4.2 Generator 1 Id current plots

The fault bus voltage drops to zero during the fault and then slowly recovers to the

original value after the fault is cleared. The Id current increases almost 7 times (from 0.5

p.u to 3.5 pu) during the fault. After the fault is cleared, the current values slowly return

to normal. It can be seen from the two figures that the results match in both cases.

Similarly, all the state variable values from 9bus_dm1_l2 match with those from ex9bus.

9bus_dm1_l2.c has also been tested on a ninety thousand bus system (nc = 10,000) with

450,000 variables. In this case, the three phase fault has been applied on bus 9 at t= 0.02

s, and the fault has been cleared at t= 0.05 s. The total simulation time is 1 s. The code

has been tested with different number of processes to get the speed up and efficiency

values in both debugging mode and optimization mode. Speed up (𝑆𝑝) and Efficiency

(𝐸𝑝) are defined as:

𝑆𝑝 =
Uniprocessor ExecutionTime

Parallel ExecutionTime

𝐸𝑝 =
𝑆𝑝

𝑝

Figure 4.3(a) Sp vs Ep in debugging mode Figure 4.3(b) Sp vs Ep in optimization mode

Figure 4.3(a) and 4.3(b) show that, both in debugging and optimization mode, the speed

up (𝑆𝑝) increases as the number of decreases. However, the efficiency decreases as the

number of processes increase. The efficiency decreases with increasing number of

processors because of the increase in process waiting time with more number of

processes. The equations to be solved are not independent of each other and as the

number of processes increase, more and more processes need to wait for data from other

processes to solve their own set of equations.

Conclusion and Future Work

This project involved the successful application of DMNetwork to organize a 9 bus

power system and TS to analyze its transient stability in case of a short circuit fault. The

results were verified with that of ex9bus example in PETSC library, which uses the same

model. The program was further developed to be able to generate much larger power

systems by making radially connected copies of the 9 bus case. A 90,000 bus system was

generated in this way and its scalability was tested using multiple processes.

The future work of this project involves using fieldsplit to apply different preconditioners

in different sections of the multiphysics system.

References

[1] Sauer, P.W., and M. A. Pai. Power System Dynamics and Stability. New Jersey:

Prentice Hall Inc., 1998.

[2] DMNetwork routines. Available online at: http://www.mcs.anl.gov/petsc/petsc-

current/docs/manualpages/DM/DMNETWORK.html

[3] PETSc Manual. Available online at: http://www.mcs.anl.gov/petsc/petsc-

current/docs/manual.pdf

http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/DM/DMNETWORK.html
http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/DM/DMNETWORK.html
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf

